skip to main content


Search for: All records

Creators/Authors contains: "Walker, Anthony P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential. 
    more » « less
  2. Abstract Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010 Science 327 418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global carbon (C) cycle (Poulter et al 2014 Nature 509 600–3, Ahlstrom et al 2015 Science 348 895–9, Zhang et al 2018 Glob. Change Biol . 24 3954–68). Projections of the global land C sink therefore rely on accurate representation of dryland C cycle processes; however, the dynamic global vegetation models (DGVMs) used in future projections have rarely been evaluated against dryland C flux data. Here, we carried out an evaluation of 14 DGVMs (TRENDY v7) against net ecosystem exchange (NEE) data from 12 dryland flux sites in the southwestern US encompassing a range of ecosystem types (forests, shrub- and grasslands). We find that all the models underestimate both mean annual C uptake/release as well as the magnitude of NEE IAV, suggesting that improvements in representing dryland regions may improve global C cycle projections. Across all models, the sensitivity and timing of ecosystem C uptake to plant available moisture was at fault. Spring biases in gross primary production (GPP) dominate the underestimate of mean annual NEE, whereas models’ lack of GPP response to water availability in both spring and summer monsoon are responsible for inability to capture NEE IAV. Errors in GPP moisture sensitivity at high elevation forested sites were more prominent during the spring, while errors at the low elevation shrub and grass-dominated sites were more important during the monsoon. We propose a range of hypotheses for why model GPP does not respond sufficiently to changing water availability that can serve as a guide for future dryland DGVM developments. Our analysis suggests that improvements in modeling C cycle processes across more than a quarter of the Earth’s land surface could be achieved by addressing the moisture sensitivity of dryland C uptake. 
    more » « less
  3. null (Ed.)
  4. Forest dynamics arise from the interplay of environmental drivers and disturbances with the demographic processes of recruitment, growth, and mortality, subsequently driving biomass and species composition. However, forest disturbances and subsequent recovery are shifting with global changes in climate and land use, altering these dynamics. Changes in environmental drivers, land use, and disturbance regimes are forcing forests toward younger, shorter stands. Rising carbon dioxide, acclimation, adaptation, and migration can influence these impacts. Recent developments in Earth system models support increasingly realistic simulations of vegetation dynamics. In parallel, emerging remote sensing datasets promise qualitatively new and more abundant data on the underlying processes and consequences for vegetation structure. When combined, these advances hold promise for improving the scientific understanding of changes in vegetation demographics and disturbances. 
    more » « less
  5. null (Ed.)
  6. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biospherein a changing climate is critical to better understand the global carboncycle, support the development of climate policies, and project futureclimate change. Here we describe and synthesize data sets and methodologies toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFOS) are based on energystatistics and cement production data, while emissions from land-use change(ELUC), mainly deforestation, are based on land use and land-use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly, and its growth rate (GATM) is computed from the annualchanges in concentration. The ocean CO2 sink (SOCEAN) is estimatedwith global ocean biogeochemistry models and observation-baseddata products. The terrestrial CO2 sink (SLAND) is estimated withdynamic global vegetation models. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, withfossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission(including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1(40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9  ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with aBIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low orsinks were too high). The global atmospheric CO2 concentration averaged over2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest anincrease in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %)globally and atmospheric CO2 concentration reaching 417.2 ppm, morethan 50 % above pre-industrial levels (around 278 ppm). Overall, the meanand trend in the components of the global carbon budget are consistentlyestimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadalvariability in CO2 fluxes. Comparison of estimates from multipleapproaches and observations shows (1) a persistent large uncertainty in theestimate of land-use change emissions, (2) a low agreement between thedifferent methods on the magnitude of the land CO2 flux in the northernextratropics, and (3) a discrepancy between the different methods on thestrength of the ocean sink over the last decade. This living data updatedocuments changes in the methods and data sets used in this new globalcarbon budget and the progress in understanding of the global carbon cyclecompared with previous publications of this data set. The data presented inthis work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b). 
    more » « less
  7. Abstract

    Mechanistic photosynthesis models are at the heart of terrestrial biosphere models (TBMs) simulating the daily, monthly, annual and decadal rhythms of carbon assimilation (A). These models are founded on robust mathematical hypotheses that describe howAresponds to changes in light and atmospheric CO2concentration. Two predominant photosynthesis models are in common usage: Farquhar (FvCB) and Collatz (CBGB). However, a detailed quantitative comparison of these two models has never been undertaken. In this study, we unify the FvCB and CBGB models to a common parameter set and use novel multi‐hypothesis methods (that account for both hypothesis and parameter variability) for process‐level sensitivity analysis. These models represent three key biological processes: carboxylation, electron transport, triose phosphate use (TPU) and an additional model process: limiting‐rate selection. Each of the four processes comprises 1–3 alternative hypotheses giving 12 possible individual models with a total of 14 parameters. To broaden inference, TBM simulations were run and novel, high‐resolution photosynthesis measurements were made. We show that parameters associated with carboxylation are the most influentialparametersbut also reveal the surprising and marked dominance of the limiting‐rate selectionprocess(accounting for 57% of the variation inAvs. 22% for carboxylation). The limiting‐rate selection assumption proposed by CBGB smooths the transition between limiting rates and always reducesAbelow the minimum of all potentially limiting rates, by up to 25%, effectively imposing a fourth limitation onA. Evaluation of the CBGB smoothing function in three TBMs demonstrated a reduction in globalAby 4%–10%, equivalent to 50%–160% of current annual fossil fuel emissions. This analysis reveals a surprising and previously unquantified influence of a process that has been integral to many TBMs for decades, highlighting the value of multi‐hypothesis methods.

     
    more » « less
  8. null (Ed.)